Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320403

RESUMEN

The uranyl ion (UO22+) is the most stable form of uranium, which exhibits high toxicity and bioavailability posing a severe risk to human health. The construction of ultrasensitive, reliable, and robust sensing techniques for UO22+ detection in water and soil samples remains a challenge. Herein, a DNA network biosensor was fabricated for UO22+ detection using DNAzyme as the heavy metal recognition element and double-loop hairpin probes as DNA assembly materials. UO22+-activated specific cleavage of the DNAzyme will liberate the triggered DNA fragment, which can be utilized to launch a double-loop hairpin probe assembly among Hab, Hbc, and Hca. Through multiple cyclic cross-hybridization reactions, hexagonal DNA duplex nanostructures (n[Hab•Hbc•Hca]) were formed. This DNA network sensing system generates a high fluorescence response for UO22+ monitoring. The biosensor is ultrasensitive, with a detection limit of 2 pM. This sensing system also displays an excellent selectivity and robustness, enabling the DNA network biosensor to work even in complex water and soil samples with excellent accuracy and reliability. With the advantages of enzyme-free operation, outstanding specificity, and high sensitivity, our proposed DNA network biosensor provides a reliable, simple, and robust method for trace levels of UO22+ detection in environmental samples.

2.
Talanta ; 271: 125681, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244307

RESUMEN

The available heavy metals in soil samples can cause the direct toxicity on ecosystems, plants, and human health. Traditional chemical extraction and recombinant bacterial methods for the available heavy metals assay often suffer from inaccuracy and poor specificity. In this work, we construct half adder and half subtractor molecular logic gates with molecular-level biocomputation capabilities for the intelligent sensing of the available lead (Pb) and cadmium (Cd). The available Pb and Cd can cleave DNAzyme sequences to release the trigger DNA, which can activate the hairpin probe assembly in the logic system. This multifunctional logic system can not only achieve the intelligent recognition of the available Pb and Cd according to the truth tables, but also can realize the simultaneous quantification with high sensitivity, with the detection limits of 2.8 pM and 25.6 pM, respectively. The logic biosensor is robust and has been applied to determination of the available Pb and Cd in soil samples with good accuracy and reliability. The relative error (Re) between the logic biosensor and the DTPA + ICP-MS method was from -8.1 % to 7.9 %. With the advantages of programmability, scalability, and multicomputing capacity, the molecular logic system can provide a simple, rapid, and smart method for intelligent monitoring of the available Pb and Cd in environmental samples.


Asunto(s)
Cadmio , Plomo , Humanos , Ecosistema , Reproducibilidad de los Resultados , Suelo
3.
J Hazard Mater ; 466: 133568, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262321

RESUMEN

Facility agriculture enhances food production capabilities. However, concerns persist regarding heavy metal accumulation resulting from extensive operation of this type of farming. This study integrated the total content, five fractions, and isotope composition of Cd and Pb in intensively farmed soils in regions characterized by industrialization (Shaoguan, SG) and urbanization (Guangzhou, GZ), to assess the sources and mechanisms causing metals accumulation. We found significantly more severe Cd/Pb accumulation and potential mobility in SG than GZ. Cd displayed higher accumulation levels and potential mobility than Pb. The distinct isotopic signals in SG (-0.54 to 0.47‰ for δ114/110Cd and 1.1755 to 1.1867 for 206Pb/207Pb) and GZ (-0.86 to 0.12‰ for δ114/110Cd and 1.1914 to 1.2012 for 206Pb/207Pb) indicated significant differences in Cd/Pb sources. The Bayesian model revealed that industrial activities and related transportation accounted for over 40% and approximately 30%, respectively, of the average contributions of Cd/Pb in SG. While urban-related (26.6%) and agricultural-related (26.3%) activities primarily contributed to Cd in GZ. The integration of δ114/110Cd and 208Pb/206Pb has further enhanced the regional contrast in sources. The present study established a comprehensive tracing system for Cd-Pb, providing crucial insights into the accumulation and distribution of these metals in facility agricultural soils.

4.
Environ Sci Technol ; 58(5): 2303-2312, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38263620

RESUMEN

Dissimilatory arsenate reduction contributes a large proportion of arsenic flux from flooded paddy soil, which is closely linked to soil organic carbon input and efflux. Humic acid (HA) represents a natural ingredient in soil and is shown to enhance microbial arsenate respiration to promote arsenic mobility. However, the community and function profiles of metabolically active arsenate-respiring bacteria and their interactions with HA in paddy soil remain unclear. To probe this linkage, we performed a genome-centric comparison of potentially active arsenate-respiring bacteria in anaerobic microcosms amended with 13C-lactate and HA by combining stable-isotope probing with genome-resolved metagenomics. Indeed, HA greatly accelerated the microbial reduction of arsenate to arsenite. Enrichment of bacteria that harbor arsenate-respiring reductase genes (arrA) in HA-enriched 13C-DNA was confirmed by metagenomic binning, which are affiliated with Firmicutes (mainly Desulfitobacterium, Bacillus, Brevibacillus, and Clostridia) and Acidobacteria. Characterization of reference extracellular electron transfer (EET)-related genes in these arrA-harboring bacteria supports the presence of EET-like genes, with partial electron-transport chain genes identified. This suggests that Gram-positive Firmicutes- and Acidobacteria-related members may harbor unspecified EET-associated genes involved in metal reduction. Our findings highlight the link between soil HA and potentially active arsenate-respiring bacteria, which can be considered when using HA for arsenic removal.


Asunto(s)
Arseniatos , Arsénico , Sustancias Húmicas , Suelo , Carbono , Bacterias/genética , Microbiología del Suelo
5.
Sci Total Environ ; 912: 168719, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040374

RESUMEN

Most microaerophilic Fe(II)-oxidizing bacteria (mFeOB) belonging to the family Gallionellaceae are autotrophic microorganisms that can use inorganic carbon to drive carbon sequestration in wetlands. However, the relationship between microorganisms involved in Fe and C cycling is not well understood. Here, soil samples were collected from different wetlands to explore the distribution and correlation of Gallionella-related mFeOB and carbon-fixing microorganisms containing cbbL and cbbM genes. A significant positive correlation was found between the abundances of mFeOB and the cbbL gene, as well as a highly significant positive correlation between the abundances of mFeOB and the cbbM gene, indicating the distribution of mFeOB in co-occurrence with carbon-fixing microorganisms in wetlands. The mFeOB were mainly dominated by Sideroxydans lithotrophicus ES-1 and Gallionella capsiferriformans ES-2 in all wetland soils. The structures of the carbon-fixing microbial communities were similar in these wetlands, mainly consisting of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The extractable Fe(II) concentrations affected the community composition of mFeOB, resulting in a significant difference in the relative abundances of the dominant FeOB. The main factors affecting cbbL-related microbial communities were dissolved inorganic carbon and oxygen, soil redox potential, and sodium acetate-extracted Fe(II). The composition of cbbM-related microbial communities was mainly affected by acetate-extracted Fe(II) and soil redox potential. In addition, the positive correlation between these functional microorganisms suggests that they play a synergistic role in Fe(II) oxidation and carbon fixation in wetland soil ecosystems. Our results suggest a cryptic relationship between mFeOB and carbon-fixing microorganisms in wetlands and that the microbial community structure can be effectively altered by regulating their physicochemical properties, thus affecting the capacity of carbon sequestration.


Asunto(s)
Hierro , Microbiota , Hierro/química , Carbono , Humedales , Suelo/química , Compuestos Ferrosos , Oxidación-Reducción
6.
Sci Total Environ ; 905: 167253, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37741398

RESUMEN

A fluorescence biosensor was developed for the ultrasensitive detection of the available lead in soil samples by coupling with DNAzyme and hairpin DNA cyclic assembly. The biorecognition between lead and 8-17 DNAzyme will cleave the substrate strands (DNA2) and release the trigger DNA (T), which can be used to initiate the DNA assembly reactions among the hairpins (H1, H2, and H3). The formed Y-shaped sensing scaffold (H1-H2-H3) contains active Mg2+-DNAyzmes at three directions. In the presence of Mg2+, the BHQ and FAM modified H4 will be cleaved by the Mg2+-DNAyzme to generate a high fluorescence signal for lead monitoring. The linear range of the fluorescence biosensor is from 1 pM to 100 nM and the detection limit is 0.2 pM. The biosensor also exhibited high selectivity and the nontarget competing heavy metals did not interfere with the detection results. Compare with the traditional method (DTPA+ICP-MS) for the available lead detection, the relative error (Re) is in the range from -8.3 % to 9.5 %. The results indicated that our constructed fluorescence biosensor is robust, accurate, and reliable, and can be applied directly to the detection of the available lead in soil samples without complex extraction steps.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , ADN Catalítico/genética , Límite de Detección , Plomo , ADN , Técnicas Biosensibles/métodos , Suelo
7.
Sci Total Environ ; 881: 163465, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37068691

RESUMEN

Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that cause harmful effects on environmental safety and human health. There is an urgent need to develop an intelligent method for PCBs sensing. In this work, we proposed a logic gate biosensing platform for simultaneous detection of multiple PCBs. 2,3',5,5'-tetrachlorobiphenyl (PCB72) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) were used as the two inputs to construct biocomputing logic gates. We used 0 and 1 to encode the inputs and outputs. The aptamer was used to recognize the inputs and release the trigger DNA. A catalytic hairpin assembly (CHA) module is designed to convert and amplify each trigger DNA into multiple programmable DNA duplexes, which initiate the trans-cleavage activity of CRISPR/Cas12a for the signal output. The activated Cas12 cleaves the BHQ-Cy5 modified single-stranded DNA (ssDNA) to yield the fluorescence reporting signals. In the YES logic gate, PCB72 was used as the only input to carry out the logic operation. In the OR, AND, and INHIBIT logic gates, PCB72 and PCB77 were used as the two inputs. The output signals can be visualized by the naked eye under UV light transilluminators or quantified by a microplate reader. Our constructed biosensing platform possesses the merits of multiple combinations of inputs, intuitive digital output, and high flexibility and scalability, which holds great promise for the intelligent detection of different PCBs.


Asunto(s)
Técnicas Biosensibles , Bifenilos Policlorados , Humanos , Sistemas CRISPR-Cas , ADN , Oligonucleótidos , Técnicas Biosensibles/métodos , Agua
8.
Sci Total Environ ; 871: 161918, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736408

RESUMEN

Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.


Asunto(s)
Brassica , Microplásticos , Neonicotinoides , Brassica/efectos de los fármacos , Brassica/metabolismo , Microplásticos/toxicidad , Poliestirenos/toxicidad , Neonicotinoides/metabolismo
9.
J Environ Sci (China) ; 126: 113-122, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503741

RESUMEN

Scorodite (FeAsO4·H2O) is a common arsenic-bearing (As-bearing) iron mineral in near-surface environments that could immobilize or store As in a bound state. In flooded soils, microbe induced Fe(III) or As(V) reduction can increase the mobility and bioavailability of As. Additionally, humic substances can act as electron shuttles to promote this process. The dynamics of As release and diversity of putative As(V)-reducing bacteria during scorodite reduction have yet to be investigated in detail in flooded soils. Here, the microbial reductive dissolution of scorodite was conducted in an flooded soil in the presence of anthraquinone-2,6-disulfonate (AQDS). Anaeromyxobacter, Dechloromonas, Geothrix, Geobacter, Ideonella, and Zoogloea were found to be the dominant indigenous bacteria during Fe(III) and As(V) reduction. AQDS increased the relative abundance of dominant species, but did not change the diversity and microbial community of the systems with scorodite. Among these bacteria, Geobacter exhibited the greatest increase and was the dominant Fe(III)- and As(V)-reducing bacteria during the incubation with AQDS and scorodite. AQDS promoted both Fe(III) and As(V) reduction, and over 80% of released As(V) was microbially transformed to As(III). The increases in the abundance of arrA gene and putative arrA sequences of Geobacter were higher with AQDS than without AQDS. As a result, the addition of AQDS promoted microbial Fe(III) and As(V) release and reduction from As-bearing iron minerals into the environment. These results contribute to exploration of the transformation of As from As-bearing iron minerals under anaerobic conditions, thus providing insights into the bioremediation of As-contaminated soil.


Asunto(s)
Arsénico , Geobacter , Suelo , Electrones , Compuestos Férricos , Hierro
10.
Sci Total Environ ; 861: 160624, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36460100

RESUMEN

Abiotic reduction of iron (oxyhydr)oxides by aqueous Fe(II) is one of the key processes affecting the Fe cycle in soil. Lepidocrocite (Lep) occurs naturally in anaerobic, clayey, non-calcareous soils in cooler and temperate regions; however, little is known about the impacts of co-precipitated humic acid (HA) on Fe(II)-induced Lep transformation and its consequences for heavy metal immobilization. In this study, the Fe(II)-induced phase transformation of Lep-HA co-precipitates was analyzed as a function of the C/Fe ratio, and its implications for subsequent Cd(II) concentration dynamic in dissolved and solid form was further investigated. The results revealed that secondary Fe(II)-bearing magnetite commonly formed during the Fe(II)-induced transformation of Lep, which further changed the mobility and distribution of Cd(II). The co-precipitated HA resulted in a decrease in the Fe solid phase transformation as the C/Fe ratios increased. Magnetite was found to be a secondary mineral in the 0.3C/Fe ratio Lep-HA co-precipitate, while only Lep was observed at a C/Fe ratio of 1.2 using X-ray diffraction (XRD) and Mössbauer spectroscopy. Based on XRD, scanning electron microscopy (SEM), Mössbauer, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) results, newly formed magnetite may immobilize Cd(II) through surface complexes, incorporation, or structural substitution. The presence of HA was beneficial for binding Cd(II) and affected the mineralogical transformation of Lep into magnetite, which further induced the distribution of Cd(II) into the newly formed secondary minerals. These results provide insights into the behavior of Cd(II) in response to reaction between humic matter and iron (oxyhydr)oxides in anaerobic environments.


Asunto(s)
Cadmio , Sustancias Húmicas , Cadmio/química , Óxido Ferrosoférrico , Compuestos Férricos/química , Hierro/química , Minerales/metabolismo , Suelo/química , Óxidos/química , Oxidación-Reducción
11.
Artículo en Inglés | MEDLINE | ID: mdl-36360697

RESUMEN

Pb and Cd accumulation in riparian soils and river sediments in river basins is a challenging pollution issue due to the persistence and bioaccumulation of these two trace metals. Understanding the migration characteristics and input sources of these metals is the key to preventing metal pollution. This study was conducted to explore the contents, geochemical fractionation, and input sources of Pb and Cd in riparian soils and river sediments from three lower reaches of the Pearl River Delta located in the Guangdong-Hong Kong-Macao Greater Bay Area. The total concentration of all Pb and Cd values exceeded the background values to varying degrees, and the exchangeable fraction of Cd in riparian soils and river sediments accounted for the largest proportion, while that of Pb was dominated by the residual fraction. Geoaccumulation index calculations showed that in the riparian soils, the average accumulation degree of Pb (0.52) in the Beijiang River (BJR) was the highest, while that of Cd (2.04) in the Xijiang River (XJR) was the highest. Unlike that in riparian soils, the maximum accumulation of Pb (0.76) and Cd (3.01) in river sediments both occurred in the BJR. Furthermore, the enrichment factor results also showed that Pb and Cd in the riparian soils and river sediments along the BJR were higher than those in the XJR and Dongjiang River (DJR). The relationship between enrichment factors and nonresidual fractions further proved that the enrichment factors of Cd were significantly correlated with the nonresidual fractions of Cd, which may imply various anthropogenic sources of Cd in the three reaches. Moreover, source identification based on principal component analysis (PCA) and Pb isotope ratio analysis indicated that riparian soils and river sediments have inconsistent pollution source structures. The PCA results showed that Pb and Cd were homologous inputs in the DJR, and there were significant differences only in the riparian soils and river sediments. Pb isotope tracing results further showed that the bedrock of high geological background from upstream may be the main reason for Cd accumulation in the XJR. However, the ultrahigh accumulation of Cd in the BJR is mainly caused by the input of the upstream mining and metallurgy industry. The control of upstream input sources will be the key to the prevention of trace metal pollution in these regions.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Ríos/química , Suelo/química , Metales Pesados/análisis , Cadmio/análisis , Plomo/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo/métodos , Oligoelementos/análisis , China
12.
Ecotoxicol Environ Saf ; 236: 113509, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421828

RESUMEN

Clay minerals are important soil components and usually coexist with organic matter, forming mineral-organic associations (MOAs), which control the speciation, mobility, and bioavailability of heavy metals. However, the adsorption mechanism of cadmium (Cd) by MOAs is still unclear, especially for the associations of amphotericorganic matter and clay minerals. In this study, 12-aminododecanoic acid (ALA) and montmorillonite (Mt) were chosen to prepare MOAs via intercalation (Mt-ALA composite) and physical mixing (Mt-ALA mixture). Batch experiments were conducted to investigate the adsorption mechanism of Cd(II) by MOAs under different pH values and initial Cd(II) concentrations. The results showed that the Cd(II) adsorption capacities followed as Mt > Mt-ALA mixture > Mt-ALA composite under acidic conditions, Mt-ALA mixture > Mt > Mt-ALA composite under neutral conditions, and Mt-ALA mixture > Mt-ALA composite > Mt under alkaline conditions, suggesting the adsorption behaviors of Cd(II) by MOAs were primarily constrained by the speciation of ALA and solution pH. Under acidic conditions, cationic HALA+ could intercalate into the interlayer of Mt and occupy the adsorption sites, reducing the adsorption capacity of Cd(II). As pH increased to neutral, HALA+ decreased and changed to a zwitterionic state, which caused ALA to release out from the interlayer of Mt-ALA composite or not easily enter into Mt-ALA mixture and promoted Cd(II) adsorption. Under alkaline conditions, the increase of anion ALA- would cause ALA to be mainly adsorbed on the surface of Mt and chelate with Cd(II), enhancing the adsorption of Cd(II). Further analysis by Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the carboxyl and amino groups of ALA both participated in the adsorption of Cd(II). These findings could extend the knowledge on the mobility and fate of Cd in clay-based soils and be used as a basis for understanding the biogeochemical behavior of Cd in the environment.


Asunto(s)
Cadmio , Contaminantes del Suelo , Adsorción , Bentonita/química , Arcilla , Concentración de Iones de Hidrógeno , Minerales , Suelo/química , Contaminantes del Suelo/química
13.
Front Microbiol ; 12: 665090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054770

RESUMEN

Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.

14.
Environ Sci Technol ; 55(6): 3634-3644, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33411520

RESUMEN

Microaerophilic Fe(II)-oxidizing bacteria are often chemolithoautotrophs, and the Fe(III) (oxyhydr)oxides they form could immobilize arsenic (As). If such microbes are active in karstic paddy soils, their activity would help increase soil organic carbon and mitigate As contamination. We therefore used gel-stabilized gradient systems to cultivate microaerophilic Fe(II)-oxidizing bacteria from karstic paddy soil to investigate their capacity for Fe(II) oxidation, carbon fixation, and As sequestration. Stable isotope probing demonstrated the assimilation of inorganic carbon at a maximum rate of 8.02 mmol C m-2 d-1. Sequencing revealed that Bradyrhizobium, Cupriavidus, Hyphomicrobium, Kaistobacter, Mesorhizobium, Rhizobium, unclassified Phycisphaerales, and unclassified Opitutaceas were fixing carbon. Fe(II) oxidation produced Fe(III) (oxyhydr)oxides, which can absorb and/or coprecipitate As. Adding As(III) decreased the diversity of functional bacteria involved in carbon fixation, the relative abundance of predicted carbon fixation genes, and the amount of carbon fixed. Although the rate of Fe(II) oxidation was also lower in the presence of As(III), over 90% of the As(III) was sequestered after oxidation. The potential for microbially mediated As(III) oxidation was revealed by the presence of arsenite oxidase gene (aioA), denoting the potential of the Fe(II)-oxidizing and autotrophic microbial community to also oxidize As(III). Thisstudy demonstrates that carbon fixation coupled to Fe(II) oxidation can increase the carbon content in soils by microaerophilic Fe(II)-oxidizing bacteria, as well as accelerate As(III) oxidation and sequester it in association with Fe(III) (oxyhydr)oxides.


Asunto(s)
Arsénico , Suelo , Carbono , Ciclo del Carbono , Compuestos Férricos , Compuestos Ferrosos , Oxidación-Reducción , Microbiología del Suelo
15.
Environ Geochem Health ; 43(3): 1305-1317, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32975698

RESUMEN

Fe(II)-oxidizing bacteria (FeOB) are important catalysts for iron cycling in iron-rich marine, groundwater, and freshwater environments. However, few studies have reported the distribution and diversity of these bacteria in flooded paddy soils. This study investigates the microbial structure and diversity of microaerophilic Fe(II)-oxidizing bacteria (mFeOB) and their possible role in Fe(II) oxidation in iron-rich paddy soils. Using enrichment experiments that employed serial transfers, the changes in microaerophilic microbial community were examined via 16S rRNA gene high-throughput sequencing. During enrichments, the Fe(II) oxidation rate decreased as transfers increased, and the maximum rate of Fe(II) oxidation was observed in the first transfer (0.197 mM day-1). Results from X-ray diffraction of minerals and scanning electron microscopy of the cell-mineral aggregates revealed that cell surfaces in all transfers were partly covered with amorphous iron oxide formed by FeOB. After four transfers, the phyla of Proteobacteria had a dominant presence that reached up to 95%. Compared with the original soil, the relative abundances of Cupriavidus, Massilia, Pseudomonas, Ralstonia, Sphingomonas, and Variovorax increased in FeS gradient tubes and became dominant genera after transfers. Cupriavidus, Pseudomonas, and Ralstonia have been identified as FeOB previously. Furthermore, the structure of the microbial community tended to be stable as transfers increased, indicating that other bacterial species might perform important roles in Fe(II) oxidation. These results suggest the potential involvement of mFeOB and these other microorganisms in the Fe(II)-oxidizing process of soils. It will be helpful for future studies to consider their role in related biogeochemical processes, such as transformation of organic matters and heavy metals.


Asunto(s)
Bacterias/clasificación , Compuestos Ferrosos/metabolismo , Microbiota , Suelo/química , Bacterias/genética , Bacterias/metabolismo , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Minerales/química , Oxidación-Reducción , ARN Ribosómico 16S/genética
16.
Ecotoxicol Environ Saf ; 205: 111328, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950805

RESUMEN

Understanding the degradation of pentachlorophenol (PCP) by indigenous microorganisms stimulated by an electron donor and shuttle in paddy soil, and the influences of PCP/electron donor/shuttle on the native microbial community are important for biodegradation and ecological and environmental safety. Previous studies focused on the kinetics and the microbial actions of PCP degradation, however, the effects of toxic and antimicrobial PCP and electron donor/shuttle on the microbial community diversity and composition in paddy soil are poorly understood. In this study, the effects of PCP, an electron donor (lactate), and the electron shuttle (anthraquinone-2, 6-disulfonate, AQDS) on the microbial community in paddy soil were investigated. The results showed that the presence of PCP reduced the microbial diversity compared to the control during PCP degradation, while increased the microbial diversity was observed in response to lactate and AQDS. The addition of PCP stimulated the microorganisms involved in PCP dechlorination, including Clostridium, Desulfitobacterium, Pandoraea, and unclassified Veillonellaceae, which were dormant in raw soil without PCP stress. In all of the treatments with PCP, the addition of lactate or AQDS enhanced PCP dechlorination by stimulating the growth of functional groups involved in PCP dechlorination and by changing the microbial community during dechlorination process. The microbial community tended to be uniform after complete PCP degradation (28 days). However, when lactate and AQDS were present simultaneously in PCP-contaminated soil, lactate acted as a carbon source or electron donor to promote the activities of microbial community, and AQDS changed the redox potential because of the production of reduced AQDS. These findings enhance our understanding of the effect of PCP and a biostimulation method for PCP biodegradation in soil ecosystems at the microbial community level, and suggest the appropriate selection of an electron donor/shuttle for accelerating the bioremediation of PCP-contaminated soils.


Asunto(s)
Microbiota/efectos de los fármacos , Pentaclorofenol/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Antraquinonas/farmacología , Biodegradación Ambiental , Transporte de Electrón , Ácido Láctico/farmacología
17.
Environ Pollut ; 241: 626-635, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29890511

RESUMEN

Thallium (Tl), a rare metal, is universally present in the environment with high toxicity and accumulation. Thallium's behavior and fate require further study, especially in the Pearl River Delta (PRD), where severe Tl pollution incidents have occurred. One hundred two pairs of soil and flowering cabbage samples and 91 pairs of soil and lettuce samples were collected from typical farmland protection areas and vegetable bases across the PRD, South China. The contamination levels and spatial distributions of soil and vegetable (flowering cabbages and lettuces) Tl across the PRD were investigated. The relative contributions of soil properties to the bioavailability of Tl in vegetables were evaluated using random forest. Random forest is an accurate learning algorithm and is superior to conventional and correlation-based regression analyses. In addition, the health risks posed by Tl exposure via vegetable intake for residents of the PRD were assessed. The results indicated that rapidly available potassium (K) and total K in soil were the most important factors affecting Tl bioavailability, and the competitive effect of rapidly available K on vegetable Tl uptake was confirmed in this field study. Soil weathering also contributed substantially to Tl accumulation in the vegetables. In contrast, organic matter might not be a major factor affecting the mobility of Tl in most of the lettuce soils. Fe and manganese (Mn) oxides also contributed little to the bioavailability of Tl. A risk assessment suggested that the health risks for Tl exposure through flowering cabbage or lettuce intake were minimal.


Asunto(s)
Brassica/química , Exposición Dietética/estadística & datos numéricos , Monitoreo del Ambiente , Lactuca/química , Contaminantes del Suelo/análisis , Talio/análisis , China , Contaminación Ambiental/análisis , Contaminación Ambiental/estadística & datos numéricos , Granjas , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos , Humanos , Compuestos de Manganeso , Óxidos , Riesgo , Ríos , Suelo , Verduras
18.
Biodegradation ; 28(2-3): 219-230, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28357551

RESUMEN

Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 µM (8.6 mg L-1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.


Asunto(s)
Bacterias/metabolismo , Halogenación , Pentaclorofenol/metabolismo , Acetatos/metabolismo , Anaerobiosis , Bacterias/genética , Biodegradación Ambiental , Biodiversidad , Filogenia , Análisis de Componente Principal , ARN Ribosómico 16S/genética
19.
Chemosphere ; 160: 141-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27372263

RESUMEN

Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants.


Asunto(s)
Antraquinonas/química , Geobacter/metabolismo , Sustancias Húmicas , Pentaclorofenol/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/química , China , Cloro/química , Dosificación de Gen , Halogenación , Concentración de Iones de Hidrógeno , Hierro/química , Oxidación-Reducción , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/química , Contaminantes del Suelo/metabolismo
20.
J Hazard Mater ; 312: 97-105, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27017395

RESUMEN

Soil microorganisms play crucial roles in the fates of pollutants, and understanding the behaviour of these microorganisms is critical for the bioremediation of PCP-contaminated soil. However, shifts remain unclear in the community structure and Fe(III)-reducing and dechlorinating microorganisms during PCP transformation processes, especially during the stages from the lag to the dechlorination phase and from the dechlorination to the stationary phase. Here, a set of lab-scale experiments was performed to investigate the microbial community dynamics accompanying PCP transformation in paddy soil. 19µM of PCP was biotransformed completely in 10days for all treatments. T-RFLP analysis of the microbial community confirmed that Veillonellaceae and Clostridium sensu stricto were the dominant groups during PCP transformation, and the structures of the microbial communities changed due to the degree of biotransformation and the addition of lactate and AQDS. However, similar temporal dynamics of the microbial communities were obtained among all treatments. Furthermore, as revealed by quantitative PCR, the dynamics of Fe(III)-reducing and dechlorinating microorganisms, including Geobacter sp., Shewanella sp., and Dehalobacter sp., were consistent with the transformation kinetics of PCP, suggesting the critical roles played by these microorganisms in PCP transformation. These findings are valuable for making predictions of and proposing methods for the microbial detoxification of residual organochlorine pesticides in paddy soil.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/química , Pentaclorofenol/química , Microbiología del Suelo , Contaminantes del Suelo/química , Biodegradación Ambiental , Hidrocarburos Clorados/química , Oryza , Plaguicidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...